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JOB-SHOP LOT RELEASE SIZES*}

GEORGE SCHUSSEL
Brown Engineering, A Teledyne Company, Huntsville, Alabama,

A new model (ELRS) for determining optimal job-shop lot sizes is presented.
Since the setting of the lot release size is one of the most important con-
trolling parameters in the scheduling of a job-gshop, the improvement in tech-
nique described in the article should result in substantial savings to job-shop
operation costs. In those cases where management is already using an EOQ
method for determining lot release sizes, the input data and system required
for the implementation of ELRS is basically similar and therefore the new
and improved analysis can be substituted at relatively minor inconvenience
to the user. For those job-shops which set lot release sizes by informal means,
the ELRS concept may provide enough of an improved technique to induce
this use of this analysis.

1. Objectives

This paper discusses & general economic model which can be used to determine
optimum production lot sizes. The objective of the development of this model
was to develop an analytical tool which could balance the general categories of
production, setup, inventory and holding costs so that a job shop could produce
efficiently and maintain inventory at the lowest possible level. The model is
quite general and can apply to any regularly scheduled job shop type of operation
requiring repetitive releases of the same part or subassembly.

The model presented in this paper was derived exclusively to solve the produc-
tion problem. Some companies have used standard Eeonomic Order Quantity
(EOQ)* analysis in the production area. The EQOQ model was derived for the
problem of ordering from an outside vendor, not for inhouse production, which
has very different problems. The Economic Lot Release Size (ELRS) model is
specifically designed to solve the problem of lot sizes in & production environ-
ment.

2, Description of Model

The model presented in this report has the capability of identifying an optimal
policy for a production inventory problem where the costs are four different
broad types. For reference, these costs are called Production, Warchouse,
Capital and Setup; however, all costs involved in such a process, such as machine
setup, inventory carrying, direct labor, variable overhead, storage, paper work,
interest, insurance, material and taxes are handled by placing the costs in appro-
priate categories.

The heart of the ELRS model is a trapezoidal figure which is used to represent
dollars of inventory value from the start of production on a release to the usage of

* Received September 1966; revised August 1967.

t The work on which this paper is based was done at Northrop Corporation, where the
author directed the work of the Management Science Staff.

! Many references discuss EOQ. For example see [2].
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the last piece on that release. The EOQ model is a triangle, where it is assumed
that production, or an order, happens at one instant and a consumption occurs
linearly after that point. Figure 1 illustrates this.

The ELRS model explicitly recognizes that production occurs over a span of
time, that there is some holding time from the end of production to the start of
consumption, and that consumption oceurs over time. This article takes the point
of view that production output from the job shop is in the form of parts and sub-
assemblies that are subsequently consumed by a production line making final
products. The mathematical model presented here, however, is very general and
may be interpreted in other fashions (such as consumption representing the sales
of a product). The holding time refers to the safety and travel time that is typi-
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cally scheduled between the end of production and the start of consumption (on
a production line or elsewhere). Figure 2 illustrates this.

If the part is one that is used in later subassemblies, ELRS has the capability
of representing the staggered repeated usage shown by Figure 3. This staggered
usage model is analyzed in Section 9.

3. Different Models of Discounting Cash Flows

Using the trapezoidal model, this report goes into three analyses of the general
problem, each successively more complex in its handling of the discounting of
future cash flows.

Model A is the general ELRS model, except for ignoring the concept of dis-
counted future cash flows, This model is very useful in itself because unless the
production and use of a lot release occur over a very long period of time (over a
year or two), or the cost of eapital is very high (100 % per year or so), the recom-
mended production lot sizes of Model A are very close to those of the more com-
plex models.

Model B uses the approximation of solving for equivalent median time periods
and treating the cash flows as if they occurred at their medians. This method is
only an approximation to correct discounting because it weighs cash flows that
oceur in the latter half of the cyele too heavily.

Model C uses a discounting factor and integrates continuously discounted
cash flows over time.

The output recommendations from all three models are suggested lot sizes.
Because of the fact that the cost of not having the exactly optimal production
sizes is very small unless the error is large, the output from the analysis should be
treated as a recommendation and not as an absolute fiat. Considerations of
workload balancing should be applied to the recommendations made by this
system and production lot sizes within 50% of the recommended lot size will
usually be efficient. Once the production lot size for a part is determined, it does
not need to be redetermined every time the part is made. An updating, based
upon new cost information, is the only reason to rerun the system on a part.

4. Term Definitions

(¢ The total cost/unit which we are trying to minimize. This includes pro-
duction and carrying costs.

(¢’ The equivalent cost figure which is a function of @ and which, when it is
minimized with respect to “@”, also determines the optimal release
quantity.

D The decimal rate which is the sum of carrying and capital percentage costs
on a basis of percentage of value/unit time.?

E  The decimal rate cost per unit time which is the sum of carrying and ware-
housing costs on the basis of size.?

! These terms are required as input for the computerized system which implements the
analysis described in this paper.
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The final storage area requirements of one complete unit.?

The total dollar cost of the capital/unit of any production inventory run.
It is proportional to the value of the item.

The sum of the variable production costs over the various required
machine operations for the entire production c¢yele. This includes
material, labor, and machine costs.

The size of the increment release. “g” will be used as the corresponding
running variable under an integral sign.

The usage rate of the finished part, in units/unit time.

The cost of capital as a decimal rate of invested funds.?

The sum of the setup costs in dollars required for all of the produetion
machine operations. This includes such items as the paperwork costs of
writing an order.?

The time at the end of all production processes on the inecrement release,
(with start time = 0)2,

The time at the start of the production line use of the increment release.
With the theory used in the report, {2 = #; + (the scheduled holding
period from the end of production to the start of usage).?

The time at the end of the use period of the increment release. It is equal
to (t: + Q/R).

The derivable middle point in our production, hold and use eycle such that

tm tm

tg t3
Wdt = W dt or0 Kdt = K dt.
tm tm
An approximation to the total production costs for each item. “V” ig
equal to (P/Q 4+ S/Q).
The carrying cost/unit including warehousing, taxes, insurance, handling,
and risk of obsolescence. Some of these factors are proportional to the
size and others to the value of the item.

5. Model A

The various costs of repetitively manufacturing any given increment quantity
will vary as shown in Figure 4 with respect to lot size. The downward slope of
the P curve reflects the fact that as the lot size increases, the average production
cost per unit decreases. This is due to the inherent efficiencies of long production
runs. The downward slope of the S curve simply reflects the fact that the same
setup charges are being distributed over more production units as the lot size
increases. The upward sloping W curve is due to the fact that as the production
lot size gets greater, the average amount of inventory will be larger. With a
larger inventory level, the holding costs will rise. The upward sloping K curve
reflects the same facts. As the average inventory level rises, the cost of support-
ing the working capital tied up in inventory rises.

The desire is to minimize the sum of these four costs,

(1)
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where everything except S is a function of Q. In general, the shape of the total
cost curve will be the familiar unimodel “U” shaped curve.

The setup charge “S” is assumed to occur during the period 0 — ¢; at a level
rate.

The production cost “P” is likewise assumed to occur at a level rate through
the period 0 — ¢ . It is a function of Q.
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The warehousing cost “W’’ oceurs throughout the entire eycle 0 — ¢; at differ-
ing levels. It is a function of Q.

The cost of capital “K” likewise occurs throughout the entire cycle 0 — ¢; at
differing levels and is also a function of Q.

5.1 Derdivation of Setup Cost “S”

The total setup cost as used in the following derivation is simply the sum of
the individual setup costs on the various machines that the part or subassembly
has to be channeled through. The setup cost per unit, then, is simply this total
divided by @, the number of units released at any one time.

where 7 covers all of the machine setups that
have to be performed on the lot release.

=15 s
(2) —QZJSn

8
Q
6.2 Derivation of Production Cost “P”

ELRS does not assume a constant production cost but makes the more common
assumption that production cost per unit decreases with the number of units in
any release according to the exponential learning curve concept.? P/ is, there-
fore, not constant, but a function of “¢’”’. This may be illustrated by the curve
in Figure 5. This graph illustrates the concept that as the lot release becomes
larger, the cost per unit drops because of the inherent learning process taking
place during production. In the equation on the graph “¢” is the running variable
and “@Q” is the production lot release. “B” is the agymptotic cost of the gth unit
as ‘“‘¢”’ approaches infinity.

“B” is approximately the “cost’”” of producing a terminal unit if the production
run is very long. This “cost” is the sum of these terminal unit costs over the j
various machine processes. “4” and “h” are two constants which specify the
learning curve. In practice, these constants may be determined by getting the
P, , g coordinates of two points, e.g., the first and tenth or the first and fifth
units. With the knowledge of “B’’ and these two other (P, , ¢) points, we can set
up two simultaneous equations substituting and solving for A and A. If we do this,
the expression giving the total production costs of any unit is

P 1%, .,
(3) @=Qj; (AR™% + B) dg.

The above expression for P/ is integratable in closed form. The result is

P_AQ-1r"9
® 0~ Qe
where log(h) is log. ().

Occasionally, such as in the case of a numerically controlled machine, the
learning curve concept is not applicable. In the computerized system for ELRS,
this special case is handled by testing to see if the costs of production do not
change with ¢.

+ B,

3 “Learning Curve’’ is the name commonly applied to this conceptin the aerospace in-
dustry. Other industries may have other names, such as ‘“‘shakedown” to apply to the same
concept.
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5.8 Definition of Warehousing “W?” Capital “K” Costs

In the ELRS formulation, the warehousing costs, W, are assumed to be made
up of two components. One of these components varies with the size of the
production item and the other component varies with its value. Items such as
warehousing and handling costs are at least partially made up of factors that
can be assumed to be proportional to the size of the product. Other costs such as
taxes, insurance, and risk of obsolescence may likewise be assumed to be propor-
tional to the dollars invested in the product. The dollar cost of capital, K, is a
percentage of value, because the cost of capital is proportional to the length of
the time and level of dollars invested. ELRS, therefore, assumes all of the costs
in both W and K to be proportional to either dollars invested or size. We now
define two new factors.

D is the sum of the ratio factors of W and K which are cost-wise related to

value.

E  is the sum of the ratio factors of W which are cost-wise related to size.

Therefore, we can say that the total cost of W and K is equal to

5) W + K = (DV + EF)-(average time held).

The average time that a unit is held may be derived by remembering the
trapezoidal inventory model and using the fact that the third time period, ¢s,
may be defined as

(6) ti=t: + Q/R.

If we sum the areas of the two triangles and the rectangle that make up the
trapezoid and divide by @, we see that the average dollar unit in inventory is
held for a time period equal to

") average time held = &, — it + Q/2R,
and therefore,
(8) W + K = (DV + EF)- (& — 3t: + Q/2R).

5.4 Cost Equation for Model A

By summing the three expressions just derived, and by neglecting the actual
timing at which the various cash flows occur, we can say that the total cost per
unit of producing and maintaining our inventory is defined as

S, A0 —-19
(9) C = —Q— + W

The @ which minimizes this function is the optimal production release quantity.
Certain costs in the above equation do not vary with @ and therefore one can
eliminate them and equivalently minimize the following function to determine the
optimal Q.

+ B+ (DV + EF)(& — 3t + Q/2R).

;8 A=K
(10) ¢ =3+ “grai

+ Qlog h

Q
+ 5 (DV + EF).
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% Taking the derivative of ¢’ with respect to Q and setting the resulting expres-
sion equal to zero, we obtain the following relationship:

_ =8, AQr%logh— A(1 — k%) |, DV + EF
(1) 0= Qr T Q*log h + 2R

This equation is not directly solvable for “Q”; however, we may numerically
determine the solution by a Newton-Raphson, False Position* or other iterative
numerical process.

Since the total cost curve is unimodal, it is also possible to use an efficient
search technique such as dichotomous or Fibonacei search (see [7}), to rapidly
converge on the minimum of Equation (10). This type of technique should very
rapidly converge to values of @ corresponding to minimum C. This is because the
cost structure of economic lot release or EOQ problems is such that the costs of a
moderately incorrect ¢ are almost negligible. One has to err substantially on the
lot size before the cost of the error is noticeable.

6. Timing of Cash Flows

We now proceed to develop two models, analogous to the one just presented,
except that they incorporate discount factors which apply to future revenues.
The first approach involves an approximation to a discount model which deter-
mines the median points of the cash flows and treats the cash flows as if they oc-
curred at their median points in time. The second approach will involve integra-
tion of the cash flows as they are continually discounted by rate of return factors.

The model of inventory values and physical size that all three models use is
typified by the trapezoid shown in Figure 2.

The ELRS model assumes both the setup and produetion costs occur linearly
over time during the period 0 — #; . The holding costs, on the other hand, oceur
throughout the entire inventory cycle and are proportional to the amount of

¢ See any numerical analysis text, such as [4].
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inventory or dollars invested in inventory. These two types of cash flows may be
represented by Figure 6.

No production or setup charges are incurred during the holding and use
periods of the cycle. Since the holding and capital costs are proportional to the
value of the inventory at any time and the value of the inventory follows the
trapezoid shape, the spending on these charges will be trapezoidal in form over
time also.

We assume that:

1) the use time is proportional to “Q” and is given by Q/R;

2) the produetion and holding times are invariant with respect to Q. This
assumes that the sequential process of production on sequentially oriented
machines is not production time limited.

Both of these assumptions will be fairly good in a production operation where
scheduled buffer times are relatively large. The production and use times are de-
fined from the start of the process on the first unit to the end of the process on
the last unit.

For S and P, letting f(f) be the cash flow that occurs over time, we state that
from time O to time ¢,

(12) f(®) = const. = S/t or P/iy,
and that from time ¢; to time ¢;,
(13) &) = 0.

Analogously, for W and K, where a; , a2, and a; are various constants, we find
that,

(14) from 0 to ¢y, J) = ayg;
from ¢; to £y, f(®) = ait; = const.;
fromiéstots, f(©) = as — ad.

7. Model B

The idea of Model B is to use the approximation that the entire cash flow of a
particular cost occurred at its median point in time. It is a simple exercise in
analytic geometry to show that the median point in time for cash flows S and P
oceur at £;/2. Likewise it can be shown that the median point for cash flows W
and K is i, , which is defined as follows.

If

(15) 3= b+ ts,

then

(16) b = VUGt + 3 — 30).
If

(17) te = 3o — 41,
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then

(18) tn = ts — VE({l? — 82 + Gl — bl .
And if neither condition holds, then

(19) tn = 3(t1 + &2 + to).

Accordingly, Model B uses the approximation that the cash flows 8 and P
oceur at /2 while the cash flows W and K oceur at i, . Therefore, the equivalent
total cost of production, C, for Model B is

A(]. —Q) 1 t/2
(20) ¢ = @+ 0oz h +@Q+»

+ (DV + EF)(k — 3t + Q/2R) (1 i )m

This equation includes all of the costs and conditions which were handled in
Model A and also does an approximate discounting with respect to time of the

cash flows.
Analogously to the first case, the “C” may be solved by numerically solving for

the zeros of the derivative of the cost expression after it is set equal to zero or by
efficiently searching for a minimum.
8. General Discounted Flow Model-—Model C

We now consider a discounting model which exactly reflects the various cash

flows as they occur.
Again letting f(t) be the flow of cash over time

(21) ¢= [ @iy

is the objective function that should be minimized if all cash flows oceur in the

period zero to is.
For our model, the above expression may be decomposed to

O A1) Bf(1)
2 o= axod ), gzt a+,®

which is the objective function to be minimized.

8.1 Production Cost

If we are to integrate with respect to time, “¢,”” then all costs which are either
explicitly or implicitly functions of time should be expressed as explicit functions
of time. For example, if we make the production cost a function of time,

(23) ?f

where “Q" is the lot size. The equation for the production cost per unit becomes,
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therefore,
“P 1 (AT 4 B) dt
0 @ tle 1+ ’
Outside of the interval 0 to ¢; , P equals zero.
8.2 Setup Cost
The setup cost as a function of time is
8 8t dt
0 @ QS T+ Y

and is equal to zero outside of the interval 0 to ¢; .

(24)

(25)

8.3 Carrying Costs

If “V” and “F” are functions of time, then
i1 ty tg —

V(1) =K?;f V() = V; and ’ y) = LE=8)
0 tl £ ig tZ - t3
The same expressions apply to “F”’ with “F” replacing “V.” Therefore, the
W plus K terms appear as follows,

“W(DV + EF)tdt 2 (DV + EF) dt
t(l + 1)t 6 1+

“(DV + EF)(t — &) dt
t2 A+t —t)

(26)

27) W+K=f0

+

8.4 Total Costs

Summing up the previous mathematical expressions, we arrive at an equation
for the total costs of producing and maintaining a produection lot,

St 1% (AR 4 B) di
1QJe L+t ' e 1+

DV +EF (" tdt gt
h o (1417 + (DV + BF) j;l -+

DV + EF [ (t — &) dt
to — 13 o 1+ )

The first term represents the total discounted setup cost; the second term is the
total discounted production cost; and the other terms are the discounted carry-
ing, holding, and capital costs. As “@” changes, the third and fourth termsin the
above equation remain constant and therefore it is possible to choose an optimal
policy by minimizing an equivalent cost expression which execludes these terms.
The fifth term varies with “Q’’ because {; is defined in terms of “Q”. However,
since C is evaluated for fixed @, terms containing ¢; may be taken outside the
integral. We fix the @ and then integrate over time to obtain the cost associated
with this Q.

(28) C =

+

+
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The first term in equation (28) becomes

S f‘l ¢ _ S((14 )" —1)
0 Jo (1 4+t wQ(l + ntlog (1 + 1)’

Integrating by parts, the second integral becomes

(29)

AL+ =179 B((1+n'"=1)
(I +n4@Qlog + tilog(T+ 1) " u(@ + nNalog @ + )’

The fifth term of the C equation can also be integrated by parts, and becomes

(30) +

Q
(31) R(DV+EF)l: 1 +R1°g(1+")_ 1 }
Qlog? (1 + )L+ n)¥ 1+ e L+ ey
where
(32) ty =t + %

If an expression for total cost/part is desired in addition to the optimal @, we
would be interested in the third and fourth terms of equation (28) even though
they do not vary with Q. These terms are also integrated by parts. The third
term becomes

(33)

DV + EF [ _ 1 _hlog(l-i—r)]
t log¥(1 + 1) (141 1+ rn ’

while the fourth term is

DV + EF (14" _
(34) TF nelogT+7 [(1 Fon 1] '

Remembering that ¢; is equal to ¢, + Q/R, the “Q’’ which minimizes the follow-
ing C expression, which is the sum of the closed integrals, is optimal:

S((1+ 7" —1) AL+ 0" - 1%

(85) C= QA+ rulog (1 4+ 1) + 14+ rnQlogh + tilog (1 + 7))
n B((1+n"-1) DV-}—EF[ _ 1
41+ rtlog (L +7)  Hlog*(l + 1) a4+
_tlog (1+ r)] DV + EF [(1 +)* 1]
(1+ nrn A4+ n=2log(1 4+ 7)1+ r)n
Q
_*_R(DV-}-EF)[ 1 +R1°g(1+")_ 1 }
Qlog? (1 + )L + )t 1+ n)e 1+ 1)~

Since this equation is not simple to differentiate with respect to @, it is suggested
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that the optimal “Q” be determined by one of the earlier mentioned search tech-
niques.

9. Generalization of ELRS to Processes Including Subassemblies

9.1 Policy Determination

Often the production problem in a fabrication shop is not viewed as a con-
tinuous process, the output of which is one final product; rather, it is viewed as
the production of several subassemblies which may then be combined into other
subassemblies, ad infinitum, until they are finally combined into the final product.
In a production process such as this, lot release sizes on the various subassemblies
may, in fact, be different from each other. The problem then becomes one of
determining optimal lot release sizes for each one of the subassemblies. Each sub-
assembly, however, cannot be viewed independently of the other subassemblies
because of the interdependencies that exist between the various subunits in the
production process. This succession of subassemblies into a major assembly may
be illustrated by Figure 7.

At first thought, determining the proper production policy out of all of those
available may seem like a very difficult task; however, simple reasoning elimi-
nates most of the available policies. From basic relationships, we can draw the
following conclusions.®

1. Never produce earlier subassemblies in smaller lot releases than later ones.® If

§ Considerations of workload balancing can change any of these conclusions. These
conclusions, as all those made in this paper, are made with the agsumption that workload
balancing considerations will be applied after the ELRS is determined. These considera-
tions may change the lot release sizes. Problems of safety stocks and spoilage of parts can
be handled within the framework of this analysis. If the expected spoilage of a part is 109,
then the initial release must be 109 higher than the optimum recommended by this analysis.
A safety stock will be an additional amount that is made onee and then carried along with
the production policy applying to oscillations on top of this safety stock.

¢ An earlier subassembly is one that fits as a part into a later subassembly. The subscript
" will be used to number the subassemblies, ‘¢ + »’’ denoting an earlier subassembly
and 4 — n’’ connoting a later subassembly.
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we did produce earlier subassemblies requiring multiple releases of an earlier part
for one release of a later one, a better policy would always be to release the
earlier subassembly in lot sizes equal to that of the later subassembly. This is be-
cause being produced less often, the total cost per unit of S/Q -+ P/Q will be less.
The total amount of time that the earlier subassembly is carried in stock will also
be less, because the earlier releases on the subassembly cannot be used until
later releases on the subassembly bring the total amount of the part available up
to what is necessary for making one release of the later assembly. A better policy
would be to produce the entire requirement of the earlier subassembly at the
time of the later release, just prior to the requirement for its usage.

2. Always produce earlier subassemblies in integer multiples of the lot release size
of the final assembly. There is no need to produce earlier subassemblies in non-
integer multiples of later subassemblies or the final assembly because the non-
integer parts of the subassembly release will be unable to completely satisfy the
demand for that subassembly in any releage of a subsequent assembly. A non-
integer multiple release will always require more production setups and runs than
will the next higher integer multiple (or any larger) release. The only advantage
of producing with more releases is that inventory carrying costs are lower. How-
ever, the noninteger part of the release ends up being carried until the next
release is made, a relatively long time that did not enter the ELRS solution, and
this extra carrying time negates the advantage of producing exactly the optimal
quantity. The non-integer part is therefore just carried longer in inventory and
provides no advantage whatsoever. An economic analysis of this extra carrying
time is presented later in this section.

3. We therefore have narrowed the choice of reasonable policies to those policies
which determine lot release sizes of earlier assemblies to be equal to integer mulliples
of the lot release sizes of later subassemblies and of the final assembly. On the follow-
ing pages, a description of how we can explicitly determine a production policy
for interrelated subassemblies is presented.

9.2 Analysis
From Conclusion 3 above,
(36) ni = knes .

When part ‘4’ goes into part ‘2 — 17, where “k” is an integer, and where the
Y

Fia. 8. Inventory Fluctuation of Fabricated Part Experiencing Continuous Usage
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“n’s” are defined from the optimal lot release quantities,
(37) Qi = nQ1,

Q1 being the lot release size of the completed assembly ready for installation on
the line.

Since the final assembly is used at a uniform rate on the line, the production
cycle of the final assembly has to make sure that parts are always available and
would resemble Figure 8. Notice that each new release is completed and ready for
usage on the line just at the time that the old release runs out (the addition of
safety stocks would not change the basic cyecle, but merely move all ordinate
values upwards).

The time between successive lot releases, T , is equivalent to the time between
the dotted lines,

(38) Ty = QyR.

(R should be defined in terms of final production units, so that all subassemblies
in an interrelated case will have the same E. If Z identical parts or subassemblies
are required for one final unit, then the ELRS output should be multiplied by Z.)

It will become evident that the time period T, is important because for optimal
inventory control all levels of lower assemblies or parts that go into assembly 1
must be released in integer time multiples of 7'y . '

Now consider subassembly 2, which is required as a part for assembly 1. From
earlier statements,

(39) Q2 = nal,

where 7. is an integer.

The fluctuation of inventory value over time for a single lot release of item 2
would be like Figure 9 if n, = 4. The abscissa represents time and the ordinate
is either dollars invested in inventory or units of inventory. Each time that sub-
assembly 1 is released, % of the total amount made of subassembly 2 is used up.
This staggered usage would cause the inventory value c¢ycle of subassembly 2 to
have the staircase effect of the figure above, each drop corresponding to a pro-
duction period of subassembly 1. This basic cycle looks different from the pre-
viously postulated trapezoidal shape for inventory. However, it is possible to
modify the previously derived ELRS formulas to take into account this new
shape.

For simplicity in the time variable, we shall work with Model A and adjust
the earlier ELRS formula by modifying the “average time/unit” expression,
which helped to determine the carrying charges. Model C would also be used,
giving a slightly more accurate policy recommendation; however, part of the
required input would be a list of the specific times that production would com-
mence on each subassembly. The author feels that in most industrial situations
the improved recommendations made possible by the use of Model C would not
be worth the extra trouble it would take to get this additional input data. There-
fore, in the many subassemblies case, we use Model A and ignore time discount-
ing.
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Fi1a. 9. Inventory Fluctuation of Subassembly 2

The cost equation for Model A of ELRS was
8, A0 =K7Y ( 1 )
(9) ¢ = Q+W+B+(DV+EF) ta §t1+Q/2R .
The last expression in this cost equation,
™ ts — 31+ Q/2R,
was derived from consideration of the trapezoid and was a representation of the

time that an average unit was held. In general, the av time/unit = 1/units pro-
duced (units X time/unit).

For the new cycle, we simply have to consider the new geometric shape. We
can break the entire cycle up into small geometric patterns whose areas we know.
By summing these small figures, we get the area of the new cycle. According to
the way our axes are defined, this area is the integral of (units X time/unit) and
when divided by the number of units produced yields an expression for average
time/unit. For this particular new eycle, the average time per unit is”

(40)  av time/unit = o, [ Q22t12 + (b — 1)@z + np (tIQIn;QZ) + % (Ty)
+2er) + L -],
g T

The second line of terms in equation (40) may be summed to

(41) %[%nz_;ﬁﬂ] .

Therefore, the

(42)  av time/unit = Qi[sziﬂ b (o e+ Bl [Qz(nz - 1)T1],

or, for subassembly 2

(43) av time/unit = [ + tl T (—Eﬂ] .

7 Definition Note: ¢;,; means {; for subassembly j. Where the second subseript is omitted,
it means that it should be the subscript for the assembly whose @ is presently being derived.
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As mentioned earlier,

(44) T: = QJ/R.

The four terms comprising equation (43) represent the areas of the various geo-
metrie shapes that make up Figure 9, which shows the cycle of inventory value
for subassembly 2.

1. The first term represents the initial triangle for production of subassembly

2.

2. The second term is the rectangle for the holding period.
3. The third term is the sum of the little triangles which oceur during the

use of this part in assembly 1.

4. The remaining terms which are algebraically combined into one term
are the long narrow rectangles which make up the rest of the area.

The ELRS formula, with the new value for the average time that one unit is
held, gives the cost of producing subassembly 2 according to the optimal policy
derivation made earlier.

A little thought shows that the time between successive lot releases of sub-

assembly 2 is given by
(45) Ty = noTs.
This is because the time between successive releases is governed by the use

period and does not depend on the production or hold times. We can consider
subassemblies that are earlier (larger number) and we now illustrate that, in

general,

(46) T: = niT,
where ‘“‘n;’ is defined as

Qi
4: i =
(47) >

The basic shape of the inventory cyele for subassembly 3, if subassembly 3
were required as a part of subassembly 2, would be similar to the trapezoid with
steps, representing the inventory cycle of subassembly 2. All subassemblies will
have this same basic shape. For instance, if Q; were six times as large as @, , then
the inventory cycle for subassembly 3 would have six steps like Figure 10, re-
gardless of what ne was. @, however, is important in determining the actual
height of the figure since n; is defined in terms of @:. If Q; was equal to 6Q:,
while @, was 4@, , then @; would equal 24Q; (i.e., ny = 24).

Notice that the length of the steps in 3’s case would be equal to the time be-
tween lot releases of 2, T, which was proportional to the product of 7'y and n. .

As another example, if Q; = 2Q,, while §: = 3Q:, the basic cycle on sub-
assembly 3 will be twice as long as that of 2 (remember basic c¢ycle time is deter-
mined only by the use period of the cyele) and six times as long as T';. The
ratio @./Q; is equal to the ratio T;/T; in general because the usage rate, R, is
the same for all subassemblies; if twice as many are produced at any one time,
we only need to produce one-half as often.
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F1e. 10. General Representation of Inventory Fluctuation
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In general, then, the coefficient “n" is the relevant factor for determining the
basic eycle period of each subassembly

(46) Ti = mTl N

The stepping stone use of 2 does not change general conclusion (48). The impor-
tant factor is “n” and the time between the production releases on 2. If n; equals
ne , the time between successive lot releases, T's , is equal to Ts . If ns equals 2n. ,
then the inventory value curve will have one step and T’y will equal 27, or 67,
when np; = 3.

Now return to the analysis of the average time per unit in the inventory cycle.
For subassembly 2 this was

(48) av time/unit = f.; — %3 + '51_2‘ + Tlﬂz—il—) ,

with the last term accounting for the area under the steps.

The most important step in the logic was that each use period in 3 corre-
sponded to a complete production period in 2.

In general, the value figure for subassembly ¢ has n./n.; steps. Therefore,
we can generalize the formula for av time/unit by allowing the replacements
gshown in Table 1.

So, in general, the average time spent in inventory/unit for subassembly ‘“z” is

Uz
(49) [m _hs gt Tin (n__1 1)]

2 2 2

and ELRS, with this expression for average time, validly determines the lot re-
lease size of assembly ¢ in the many subassemblies problem.

9.8 Solution Algorithm

The above theory provides an adequate base for the determination of an al-
gorithm which will lead to a near optimal production lot size for several interre-
lated subassemblies.

1. Starting at the lowest level (or highest numbered or earliest subassemblies),
determine the @’s and associated total C/s. Using the regular ELRS Model A
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TABLE 1

Generalization of Equation 49

T) to be replaced by Ti.1
i
ny  to be replaced by niy
tia to be replaced by  t1,i
ti,2 to be replaced by t1.:
2.2 to be replaced by f3,:
where n; = 1

formula, derive the @s and C/s of all subassemblies working from the earlier
ones toward the later ones and using the costs of all prerequisite subassemblies
as material costs for later subassemblies. Finish the entire list of @’s and (’s
ending up with a value for Q; and C,.

2. Now, given @; and Cy, work backwards, developing new ¢.'s and C.’s from
the optimum policy restrictions such as Qi1 = kQ.:, where k is an integer. The
new ELRS formula is used in this step but the subassembly material costs are
the same ones derived in the previous step. Numerically, we only need to test
integer values for ‘“n” starting with 1. As soon as a cost figure, C;, is reached
that is higher than the C,; determined with n — 1, then we can say, without test-
ing any further, that @: corresponding to the previous value is the cheapest. We
can do this because the cost curve derived from the ELRS formula has a positive
second derivative everywhere and therefore a unique minimum. Now we have an
entire set of Qs and C/s derived from the policies mentioned earlier.

3. Using the lowest level C/'s just obtained from Step 2, now derive the next
higher level C/s for the constrained Q.’s from Step 2. This computation uses the
lowest level Cs as material costs in conjunetion with the new Model A formula
and the most recent values for 7'; and n;. Using earlier subassemblies’ costs as
material cogt inputs to later subassemblies, compute new C.’s for the constrained
Qs through the entire pyramid of prerequisite relationships back towards the
final subassembly. The purpose of Step 3 is to modify the costs associated with
Step 2 to reflect the constrained production policy. When the new costs of all of
the subassemblies prior to the final one are determined, compute a new @; and
C; for the final subassembly.

4. Now go back and repeat Step 2 and continue iterating between Step 2 and
Step 3 until two successive Qs or Cy’s from Step 3 are within a small arbitrary
percentage of each other, such as 5%. When this point is reached, complete
Step 2 one last time. This final set of @’s and associated C;’s provides the optimal
policy for production in the many subassemblies problem. If looked at inde-
pendently, the production of any particular subassembly might be cheaper at a
different @ than that determined by this method; however, as it has been shown
above, the logical interrelationships make this overall policy the best.

10. Numerical Test of ELRS

Two computer programs were written so that numerical tests could be made
of the various models proposed in this paper. The purpose of the first program
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was to permit an exhaustive testing of the differences between the recommended
policies of Model A, Model B and Model C. These three different analyses were
simultaneously tested on forty separate data cases, half of which were fairly
reasonable representations of actual production data and the other half of which
were extreme, unrealistic data cases which were used to test the limiting behavior
of the ELRS model. The average IBM 7090 total run time per case was less than
one second.

The second program implemented the generalization of ELRS to processes
including subassemblies. The primary purpose of this program was to test the
reasonableness of recommended policies in the many subassemblies case and to
test simultaneously the effectiveness and rapidity of convergence of the solution
algorithm proposed for the many subassemblies case.

The results obtained from all of the test cases in both programs were very
reasonable. The cost curves obtained were of the typical broad flat EOQ type.
This type of cost curve reflects conditions where small to medium size deviations
from an optimal policy result in minor cost penalties.

The only exception from the reasonable behavior of the models was the per-
formanece shown by Model B under extremely large interest rates. With a dis-
count rate of several hundred percent per year, the cost curve from Model B lost
its U shape and showed continually decreasing costs as @ increased. Although this
degeneracy occurred under a test of very unrealistic conditions, it is sufficient
cause to suggest that Model B not be a recommended analysis. Both Model B
and Model C require the same type of input data and since Model C is a con-
ceptually superior analysis, there is really no need for the Model B approach.
Model A and Model C behaved very reasonably for all of the test cases.

Table 2 lists some typical values that were determined for actual parts fabri-
cated at the Norair Division of Northrop Corporation.

As the discount rate increased while all other conditions remained comparable,
the production policy recommended by all of the models decreased. On the other
hand, in every case where the recommended @ by each of the models was dif-
ferent, the sizes recommended by Models B and C were larger than that recom-
mended by A. Under reasonable discount rate assumptions, the recommendations
by all of the models were the same; however, when the discount rate got up to
approximately 100 % per year and over, differences in recommended §’s were ob-

TABLE 2

Norair Ezamples

Optimum Release Setup and Pro-
Quantity duction § Costs

138 1
78 2
59 8
29 10
68 20
63 25
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TABLE 3
Model C Recommendations
Low Q Optimal Q High Q
17 27 4R
24 36 85
26 54 105
30 48 90

served. The worst discrepaney in a policy recommended by Model A from that
recommended by Model C was found on a data case where the discount rate was
1000 % (maximum tested) per annum. In this ease, the recommended @ of Model
A was 38% less than that of Model C; however, the cost penalty on Model C of
using this 38 % lower @, was only 1.5 %.2 The next worst cases involved deviations
in recommended policies of 25 % and 30% with cost penalties in both cases of
less than 1% as figured by the Model C analysis.

Because of these small differences, it was concluded that under most reason-
able production circumstances the added value of the sophistication introduced
by the discounting of future costs was relatively minor. On the other hand, the
only additional data required for the Model C solution are # and & (r is not a
new data requirement because it is included as a part of D). If this information
is readily available and the evaluation is done on a computer, then there is no
reason not to use the more correct approach, Model C.

The broad flat area on the cost eurve around the optimum production lot size
may be effectively illustrated by a couple of examples. Where both “HIGH @”
and “LOW @ are defined as the @’s on each side of the optimal § corresponding
to a cost 5 % greater than the optimal @, Table 3 represents typical output data.
It is obvious that the production policy ean vary substantially around the opti-
mal while incurring only small cost penalties. If the optimal production policy
cannot be followed, it seems to be better to err by producing too many at each
lot release rather than too few.

The advantage of an upward bias over a downward one is reinforced if we are
using the recommendations of Model A instead of Model C. This is because
Model A, which is really a simplification of the more correct analysis, Model C,
tended to be slightly lower in its recommended lot sizes.

It may be helpful to restate the fact that Model A was used as the basis for
the generalization of ELRS to the interrelated parts case because all of the data
for all subassemblies would have to be introduced in a time dependent manner
for Model C to function properly. As mentioned in Section 9.2, it was felt that

8 Thig is not a misprint. All other things remaining equal, an increase in 7 always caused
the recommended @ from Model C to decrease, However, as unplausible as it may sound,
Model C, which considered discounted values always recommended & larger @ than Model
A, which ignored r. Total costs at any @ were smaller under Model C than Model 4 but the
minimum cost always occurred at a larger Q.
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this type of input data would not be readily available in most industrial situa-
tions. Data on sequential time relationships are not required as input for Model
A; and, since the policy recommendations were identical with those of Model C
under reasonable circumstances, Model A was used as the basis for the generaliza-
tion.

The second program and the associated tests showed that the ELRS model for
several interrelated subassemblies and the proposed solution algorithm were
reasonsable, feasible and very efficient in terms of computer run time. The solution
method on all of the data eases ran and converged very rapidly, never requiring
more than two cycles. The policy recommendations always seemed very reason-
able. Usually the suggested lot size of the final subassembly prior to line usage
was very close to what it would have been not considering any of the relation-
ships. The solution algorithm seemed to typically round off earlier lot release
sizes to the integer multiple of the successor subassembly that was nearest to
what the independent @ would have been for the predecessor subassembly (within
constraints). For example, one test was run with five levels of hierarchical de-
pendency with the same data applying to each subassembly. The only difference
at each step, therefore, was in the cost of materials; the later subassemblies in-
cluded the cost of the earlier subassemblies in their costs of materials. In this case,
two out of the four predecessor levelshad “n’s” that were double that of succes-
sors, so that the first level subassemblies were released in lot sizes four times as
great as the final subassembly. Other tests showed similarly reasonable behavior
and the author was unable to uncover any numeric examples that the generalized
ELRS process was unable to analyze.

It may be of interest to note that the twenty real test cases were randomly
selected from the Norair Division of Northrop Corporation and ealculations
showed that production according to ELRS sizes averaged a total of setup,
production, and holding costs that was 2% percent lower than the then current
figures. For a moderately large job-shop that had expenditures of $20 million a
year, this reduction in total costs would amount to $500,000.

11. Conclusions and Limitations

This paper has presented an analysis of the cost of repetitively producing and
maintaining parts and subassemblies in a fabrication or job shop. The objective
of this analysis was to determine the cheapest lot sizes for producing and storing
these parts and subassemblies. The result of this analysis was a mathematical
economic model that took into account various broad classes of costs, such as
setup, production, carrying, capital, direct labor, warehouse, storage, paperwork,
taxes, insurance, interest, material, etc.; and determined the lot release size that
would make the total of these costs the lowest possible. Some other important
considerations such as production schedules and correct inventory levels may be
determined as a direet outgrowth of the analysis presented.

Some companies use the standard £0Q formula,

_ (2R8\'*
R = Usage Rate
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S = Setup Cost
A = Carrying cost/unit/time,

to determine production lot release sizes. We have seen, however, that compared
with standard EOQ, ELRS has the following advantages.

1. Production and Setup costs are spread over time—EOQ assumes that
all of these charges oceur at one moment.

2. Production and Setup costs are spread over the machines involved in the
production process—EOQ does not include this.

3. ELRS treats production costs on a learning curve basis—EOQ does
not analyze this.

4. ELRS takes into account scheduled holding periods after the produc-
tion process is completed and before scheduled use—EOQ does not consider
this.

5. ELRS has the capability to discount future costs by the interest rate—
EOQ completely ignores this point.

6. ELRS’s maintenance costs are based on value and physical storage
size—EOQ only considers value.

7. ELRS establishes an optimum overall production policy for any group
of interrelated parts and subassemblies. If part A is required to make sub-
assembly B, this fact is taken into account in determining an overall opti-
mum production policy for the entire group of interrelated parts and sub-
assemblies—HEOQ does not consider this at all.

The recommendations made by the model presented in this report should not
always be followed exactly because some factors, such as physical production
constraints, have not been included in the analyses. If the optimal production
release size is 50 and production restraints limit the release size to 10, then the
lot size has to be 10. Special conditions can also influence the applicability of the
model. For example, the analysis is only really applicable to the production of a
part whose design is fairly stable. If a part were so often technologically changed
that the design was only frozen for a short time period, then it would be a waste
of time to analyze its production by the ELRS model. The model also assumes
that the usage rate and the amount held in safety stock are fairly stable.

ELRS analysis should not be applied to a part the first few times it is released.
Only when a certain amount of production history and experience has built up
would a model such as ELRS become applicable. After the production policy
recommendations of the ELRS model are made available, they should be modi-
fied by allowances for:

1. Workload balancing.

2. Manpower fluctuations.

3. Technical restraints, such as machine capacity.

4. Emergencies such as new requirements with very short lead times.

The recommendations of ELRS cannot be followed blindly, but must be
analyzed for reasonableness in light of these other criteria.

In short, the model presented in this report is offered as a significantly better
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approach to determining production release sizes than any other available, and
it is offered as a way of substantially reducing the cost of production and inven-
tory in a job shop.

6.

7.
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