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JOB-SHOP LOT RELEASE SIZES *t 

GEORGE SCHUSSEL 

Brown Engineering, A Teledyne Company, Huntsville, Alabama, 

A new model (ELRS) for determining optimal job-shop lot sizes is presented. 
Since the setting of the lot release size is one of the most important con
trolling parameters in the scheduling of a job-shop, the improvement in tech
nique described in the article should result in substantial savings to job-shop 
operation costs. In those cases where management is already using an EOQ 
method for determining lot release sizes, the input data and system required 
for the implementation of ELRS is basically similar and therefore the new 
and improved analysis can be substituted at relatively minor inconvenience 
to the user. For those job-shops which set lot release sizes by iniormal means, 
the ELRS concept may provide enough of an improved technique to induce 
this use of this analysis. 

1. Objectives 

This paper discusses a general economic model which can be used to determine 
optimum production lot sizes. The objective of the development of this model 
was to develop an analytical tool which could balance the general categories of 
production, setup, inventory and holding costs so that a job shop could produce 
efficiently and maintain inventory at the lowest possible level. The model is 
quite general and can apply to any regularly scheduled job shop type of operation 
requiring repetitive releases of the same part or subassembly. 

The model presented in this paper was derived exclusively to solve the produc
tion problem. Some companies have used standard Economic Order Quantity 
(EOQ)l analysis in the production area. The EOQ model was derived for the 
problem of ordering from an outside vendor, not for inhouse production, which 
has very different problems. The Economic Lot Release Size (ELRS) model is 
specifically designed to solve the problem of lot sizes in a production environ
ment. 

2. Description of Model 

The model presented in this report has the capability of identifying an optimal 
policy for a production inventory problem where the costs are four different 
broad types. For reference, these costs are called Production, Warehouse, 
Capital and Setup; however, all costs involved in such a process, such as machine 
setup, inventory carrying, direct labor, variable overhead, storage, paper work, 
interest, insurance, material and taxes are handled by placing the costs in appro
priate categories. 

The heart of the ELRS model is a trapezoidal figure which is used to represent 
dollars of inventory value from the start of production on a release to the usage of 

* Received September 1966; revised August 1967. 
t The work on which this paper is based was done at Northrop Corporation, where the 

author directed the work of the Management Science Staff. 
1 Many references discuss EOQ. For example see [2]. 
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the last piece on that release. The EOQ model is a triangle, where it is assumed 
that production, or an order, happens at one instant and a consumption occurs 
linearly after that point. Figure 1 illustrates this. 

The ELRS model explicitly recognizes that production occurs over a span of 
time, that there is some holding time from the end of production to the start of 
consumption, and that consumption occurs over time. This article takes the point 
of view that production output from the job shop is in the form of parts and sub
assemblies that are subsequently consumed by a production line making final 
products. The mathematical model presented here, however, is very general and 
may be interpreted in other fashions (such as consumption representing the sales 
of a product). The holding time refers to the safety and travel time that is typi-
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cally scheduled between the end of production and the start of consumption (on 
a production line or elsewhere). Figure 2 illustrates this. 

H the part is one that is used in later subassemblies, ELRS has the capability 
of representing the staggered repeated usage shown by Figure 3. This staggered 
usage model is analyzed in Section 9. 

3. Different Models of Discounting Cash Flows 

Using the trapezoidal model, this report goes into three analyses of the general 
problem, each successively more complex in its handling of the discounting of 
future cash flows. 

Model A is the general ELRS model, except for ignoring the concept of dis
counted future cash flows. This model is very useful in itself because unless the 
production and use of a lot release occur over a very long period of time (over a 
year or two), or the cost of capital is very high (100% per year or so), the recom
mended production lot sizes of Model A are very close to those of the more com
plex models. 

Model B uses the approximation of solving for equivalent median time periods 
and treating the cash flows as if they occurred at their medians. This method is 
only an approximation to correct discounting because it weighs cash flows that 
occur in the latter half of the cycle too heavily. 

Model C uses a discounting factor and integrates continuously discounted 
cash flows over time. 

The output recommendations from all three models are suggested lot sizes. 
Because of the fact that the cost of not having the exactly optimal production 
sizes is very small unless the error is large, the output from the analysis should be 
treated as a recommendation and not as an absolute fiat. Considerations of 
workload balancing should be applied to the recommendations made by this 
system and production lot sizes within 50 % of the recommended lot size will 
usually be efficient. Once the production lot size for a part is determined, it does 
not need to be redetermined every time the part is made. An updating, based 
upon new cost information, is the only reason to rerun the system on a part. 

4. Term. Definitions 

C The total cost/unit which we are trying to minimize. This includes pro
duction and carrying costs. 

C' The equivalent cost figure which is a function of Q and which, when it is 
minimized with respect to "Q", also determines the optimal release 
quantity. 

D The decimal rate which is the sum of carrying and capital percentage costs 
on a basis of percentage of value/unit time.2 

E The decimal rate cost per unit time which is the sum of carrying and ware
housing costs on the basis of size.2 

I These terms are required as input for the computerized system which implements the 
analysis described in this paper. 
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F The final storage area requirements of one complete unit.2 

K The total dollar cost of the capital/unit of any production inventory run. 
It is proportional to the value of the item. 

P The sum of the variable production costs over the various required 
machine operations for the entire production cycle. This includes 
material, labor, and machine costs. 

Q The size of the increment release. "q" will be used as the corresponding 
running variable under an integral sign. 

R The usage rate of the finished part, in units/unit time. 
r The cost of capital as a decimal rate of invested funds.2 

S The sum of the setup costs in dollars required for all of the production 
machine operations. This includes such items as the paperwork costs of 
writing an order.2 

tl The time at the end of all production processes on the increment release, 
(with start time == 0)2. 

t2 The time at the start of the production line use of the increment release. 
With the theory used in the report, t2 = tl + (the scheduled holding 
period from the end of production to the start of usage).2 

t3 The time at the end of the use period of the increment release. It is equal 
to (t2 + Q/R). 

tm The derivable middle point in our production, hold and use cycle such that 

l
tm 

It3 l tm I t3 

W dt = W dt or K dt = K dt. 
o tm 0 tm 

V An approximation to the total production costs for each item. "V" is 
equal to (P/Q + S/Q). 

W The carrying cost/unit including warehousing, taxes, insurance, handling, 
and risk of obsolescence. Some of these factors are proportional to the 
size and others to the value of the item. 

5. Model A 

The various costs of repetitively manufacturing any given increment quantity 
will vary as shown in Figure 4 with respect to lot size. The downward slope of 
the P curve reflects the fact that as the lot size increases, the average production 
cost per unit decreases. This is due to the inherent efficiencies of long production 
runs. The downward slope of the S curve simply reflects the fact that the same 
setup charges are being distributed over more production units as the lot size 
increases. The upward sloping W curve is due to the fact that as the production 
lot size gets greater, the average amount of inventory will be larger. With a 
larger inventory level, the holding costs will rise. The upward sloping K curve 
reflects the same facts. As the average inventory level rises, the cost of support
ing the working capital tied up in inventory rises. 

The desire is to minimize the sum of these four costs, 

(1) S P 
C = Q+ Q + W+K, 
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where everything except 8 is a function of Q. In general, the shape of the total 
cost curve will be the familiar unimodel "U" shaped curve. 

The setup charge "8" is assumed to occur during the period 0 - tl at a level 
rate. 

The production cost "P" is likewise assumed to occur at a level rate through 
the period 0 - tl . It is a function of Q. 
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The warehousing cost "w" occurs throughout the entire cycle 0 - ta at differ
ing levels. It is a function of Q. 

The cost of capital "K" likewise occurs throughout the entire cycle 0 - ta at 
differing levels and is also a function of Q. 

5.1 Derivation of Setup Cost "S" 

The total setup cost as used in the following derivation is simply the sum of 
the individual setup costs on the various machines that the part or subassembly 
has to be channeled through. The setup cost per unit, then, is simply this total 
divided by Q, the number of units released at anyone time. 

(2) where i covers all of the machine setups that 
have to be performed on the lot release. 

5.2 Derivation of Production Cost "P" 

ELRS does not assume a constant production cost but makes the more common 
assumption that production cost per unit decreases with the number of units in 
any release according to the exponential learning curve concept.3 P /Q is, there
fore, not constant, but a function of "q". This may be illustrated by the curve 
in Figure 5. This graph illustrates the concept that as the lot release becomes 
larger, the cost per unit drops because of the inherent learning process taking 
place during production. In the equation on the graph "q" is the running variable 
and "Q" is the production lot release. "B" is the asymptotic cost of the qth unit 
as "q" approaches infinity. 

"B" is approximately the "cost" of producing a terminal unit if the production 
run is very long. This "cost" is the sum of these terminal unit costs over the i 
various machine processes. "A" and "h" are two constants which specify the 
learning curve. In practice, these constants may be determined by getting the 
P q , q coordinates of two points, e.g., the first and tenth or the first and fifth 
units. With the knowledge of "B" and these two other (Pq , q) points, we can set 
up two simultaneous equations substituting and solving for A and h. If we do this, 
the expression giving the total production costs of any unit is 

(3) ~ = ~lQ (Ah-q + B)~. 
The above expression for P/Q is integratable in closed form. The result is 

P A(I - h-Q
) 

(4) Q = Q log (h) + B, 

where log (h) is loge (h). 
Occasionally, such as in the case of a numerically controlled machine, the 

learning curve concept is not applicable. In the computerized system for ELRS, 
this special case is handled by testing to see if the costs of production do not 
change with q. 

3 "Learning Curve" is the name commonly applied to this concept in the aerospace in
dustry. Other industries may have other names, such as "shakedown" to apply to the same 
concept. 
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5.3 Dejiniticm oj Warehousing "W" Capital "K" Costs 

In the ELRS formulation, the warehousing costs, W, are assumed to be made 
up of two components. One of these components varies with the size of the 
production item and the other component varies with its value. Items such as 
warehousing and handling costs are at least partially made up of factors that 
can be assumed to be proportional to the size of the product. Other costs such as 
taxes, insurance, and risk of obsolescence may likewise be assumed to be propor
tional to the dollars invested in the product. The dollar cost of capital, K, is a 
percentage of value, because the cost of capital is proportional to the length of 
the time and level of dollars invested. ELRS, therefore, assumes all of the costs 
in both Wand K to be proportional to either dollars invested or size. We now 
define two new factors. 

D is the sum of the ratio factors of Wand K which are cost-wise related to 
value. 

E is the sum of the ratio factors of W which are cost-wise related to size. 
Therefore, we can say that the total cost of Wand K is equal to 

(5) W + K = (DV + EF)·(average time held). 

The average time that a unit is held may be derived by remembering the 
trapezoidal inventory model and using the fact that the third time period, t3 , 
may be defined as 

(6) ta = t2 + Q/R. 

If we sum the areas of the two triangles and the rectangle that make up the 
trapezoid and divide by Q, we see that the average dollar unit in inventory is 
held for a time period equal to 

(7) average time held = t2 - ttl + Q/2R, 

and therefore, 

(8) W + K = (DV + EF)·(t2 - ttl + Q/2R). 

5.4 Cost Equaticmjor Model A 

By summing the three expressions just derived, and by neglecting the actual 
timing at which the various cash flows occur, we can say that the total cost per 
unit of producing and maintaining our inventory is defined as 

(9) C = g + A~ l:g h;Q) + B + (DV + EF)(l2 - ttl + Q/2R). 

The Q which minimizes this function is the optimal production release quantity. 
Certain costs in the above equation do not vary with Q and therefore one can 
eliminate them and equivalently minimize the following function to determine the 
optimal Q. 

(10) C' = ~ + A(1 - h-
Q

) + Q (DV + EF). 
Q Q log h 2R 
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lITaking the derivative of C' with respect to Q and setting the resulting expres
sion equal to zero, we obtain the following relationship: 

(11) o = -8 + AQh-Q log h - A(1 - h-Q
) + DV + EF 

Q2 Q2 log h 2R . 

This equation is not directly solvable for "Q"; however, we may numerically 
determine the solution by a Newton-Raphson, False Position4 or other iterative 
numerical process. 

Since the total cost curve is unimodal, it is also possible to use an efficient 
search technique such as dichotomous or Fibonacci search (see [7]), to rapidly 
converge on the minimum of Equation (10). This type of technique should very 
rapidly converge to values of Q corresponding to minimum C. This is because the 
cost structure of economic lot release or EOQ problems is such that the costs of a 
moderately incorrect Q are almost negligible. One has to err substantially on the 
lot size before the cost of the error is noticeable. 

6. Timing of Cash Flows 

We now proceed to develop two models, analogous to the one just presented, 
except that they incorporate discount factors which apply to future revenues. 
The first approach involves an approximation to a discount model which deter
mines the median points of the cash flows and treats the cash flows as if they oc
curred at their median points in time. The second approach will involve integra
tion of the cash flows as they are continually discounted by rate of return factors. 

The model of inventory values and physical size that all three models use is 
typified by the trapezoid shown in Figure 2. 

The ELRS model assumes both the setup and production costs occur linearly 
over time during the period 0 - tl . The holding costs, on the other hand, oceur 
throughout the entire inventory cycle and are proportional to the amount of 

, See any numerical analysis text, such as [4]. 
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inventory or dollars invested in inventory. These two types of cash Bows may be 
represented by Figure 6. 

No production or setup charges are incurred dming the holding and use 
periods of the cycle. Since the holding and capital costs are proportional to the 
value of the inventory at any time and the value of the inventory follows the 
trapezoid shape, the spending on these charges will be trapezoidal in form over 
time also. 

We assume that: 
1) the use time is proportional to "Q" and is given by QI R; 
2) the production and holding times are invariant with respect to Q. This 

assumes that the sequential process of production on sequentially oriented 
machines is not production time limited. 
Both of these assumptions will be fairly good in a production operation where 

scheduled buffer times are relatively large. The production and use times are de
fined from the start of the process on the first unit to the end of the process on 
the last unit. 

For Sand P, letting J(t) be the cash flow that occurs over time, we state that 
from time 0 to time t1 , 

(12) J(t) = canst. = Sitl or Pltl , 

and that from time tl to time ta , 

(13) J(t) = O. 

Analogously, for Wand K, where a1, a2, and as are various constants, we find 
that, 

(14) from 0 to t1, J(t) = alt; 

from t1 to t2 , J(t) = altl = const.; 

from t2 to t3 , J(t) = a2 - ast. 

7. Model B 

The idea of Model B is to use the approximation that the entire cash flow of a 
particular cost occurred at its median point in time. It is a simple exercise in 
analytic geometry to show that the median point in time for cash flows Sand P 
occur at t1/2. Likewise it can be shown that the median point for cash flows W 
and K is tm , which is defined as follows. 

If 

(15) 3tl ~ t2 + t3 , 

then 

(16) 

If 

(17) t. ~ 3t~ - tl • 
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then 

(18) 

And if neither condition holds, then 

(19) 

Accordingly, Model B uses the approximation that the cash flows 8 and P 
occur at tJ/2 while the cash flows Wand K occur at t". . Therefore, the equivalent 
total cost of production, C, for Model B is 

_ (8 A(1 - h-
Q

) )( 1 ) t1/
2 

(20) C - Q + Q log h + B 1 + r 

( 
1 )tm + (DV + EF)(~ - ~tl + Q/2R) 1 + r . 

This equation includes all of the costs and conditions which were handled in 
Model A and also does an approximate discounting with respect to time of the 
cash flows. 

Analogously to the first case, the "C" may be solved by numerically solving for 
the zeros of the derivative of the cost expression after it is set equal to zero or by 
efficiently searching for a minimum. 

8. General Discounted Flow Model-Model C 

We now consider a discounting model which exactly reflects the various cash 
flows as they occur. 

Again letting jet) be the flow of cash over time 

(21) C = l t8 

jet) dt 
o (1 + r)t 

is the objective function that should be minimized if all cash flows occur in the 
period zero to tg • 

For our model, the above expression may be decomposed to 

l t1 jet) lt2 jet) ltl j(t) 
(22) C = 0 (1 + r)t dt + tl (1 + r)1 dt + t2 (1 + r)t dt, 

which is the objective function to be minimized. 

8.1 Production Cost 

If we are to integrate with respect to time, "t," then all costs which are either 
explicitly or implicitly functions of time should be expressed as explicit functions 
of time. For example, if we make the production cost a function of time, 

(23) 
Qt 

q = 4' 
where "Q" is the lot size. The equation for the production cost per unit becomes, 
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therefore, 

(24) 
/

11 ~ = ! {II (A(h)-Qllt l + B) dt 
o Q t1 10 (1 + 1')t ' 

Outside of the interval 0 to tl , P equals zero. 

8.2 Setup Cost 

The setup cost as a function of time is 

(25) 
/

11 S S tl dt 
o Q = tIQ 10 (I + 1')1' 

and is equal to zero outside of the interval 0 to tl . 

8.3 Carrying C osis 

If "V" and "F" are functions of time, then 

(26) 
/

11 vt 112 Iia 
Vet) = - i Vet) = Vi and Vet) 

o tIll 12 

B-459 

The same expressions apply to "F" with "F" replacing "V." Therefore, the 
W plus K terms appear as follows, 

(27) W + K = rl1 
(DV + EF)t dt + t2 (DV + EF) dt 

10 tI(l + 1')1 Jt1 (1 + 1')t 

+ {ta (DV + EF) (t - fa) dt 
Jt2 (1 + 1')t(0. - ts) . 

8.4 Total Costs 

Summing up the previous mathematical expressions, we arrive at an equation 
for the total costs of producing and maintaining a production lot, 

S ltl dt 1 tl (AH-Qt/Il + B) dt 
(28) C = tlQ 0 (1 + 1')t + t;: Jo (1 + 1')t 

+ DV + EF 111 t dt + (DV + EF) t2 dt 
tl 0 (1 + 1')t Jt1 (I + 1')1 

+ DV + EF ria (t - is) dt 
t2 - ts Jt2 (I + 1')1 • 

The first term represents the total discounted setup cost i the second term is the 
total discounted production cost; and the other terms are the discounted carry
ing, holding, and capital costs. As "Q" changes, the third and fourth terms in the 
above equation remain constant and therefore it is possible to choose an optimal 
policy by minimizing an equivalent cost expression which excludes these terms. 
The fifth term varies with "Q" because ts is defined in terms of "Q". However, 
since C is evaluated for fixed Q, terms containing t3 may be taken outside the 
integral. We fix the Q and then integrate over time to obtain the cost associated 
with this Q. 
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The first term in equation (28) becomes 

(29) S rt1 dt S«(1 + 1')11 - 1) 
tlQ 10 (1 + 1')1 t1Q(1 + 1')lllog (1 + 1')' 

Integrating by parts, the second integral becomes 

(30) 
A«(1 + 1')11 - h-Q

) + B«(1 + 1')11 - 1) 
(1 + 1')ll(Q log + tllog (1 + 1'» tl«1 + 1')11 log (1 + 1'»' 

The fifth term of the C equation can also be integrated by parts, and becomes 

(31) R(DV + EF) 1 R log (1 + 1') 1 
[ 

Q ] 
Q log2 (1 + 1') (1 + 1')13 + (1 + 1')12 - (1 + 1')12 ' 

where 

(32) 

If an expression for total cost/part is desired in addition to the optimal Q, we 
would be interested in the third and fourth terms of equation (28) even though 
they do not vary with Q. These terms are also integrated by parts. The third 
term becomes 

(33) DV + EF [1 1 tl log (1 + 1')J 
tllog2(1 + 1') - (1 + 1') - (1 + 1')11 ' 

while the fourth term is 

(34) DV + EF [(1 + 1')12 - 1J 
(1 + 1')12 log (1 + 1') (1 + 1')11 • 

Remembering that t3 is equal to t2 + Q/R, the "Q" which minimizes the follow
ing C expression, which is the sum of the closed integrals, is optimal: 

(35) 
C = S«l + 1')/1 - 1) + A«l + 1')/1 - h-Q

) 

tl Q(l + 1')tl log (1 + 1') (1 + 1')ll(Q log h + tl log (1 + 1'» 

+ R«(1 + 1')/1 - 1) + DV + EF [1 _ 1 
t1(1 + 1')tl log (1 + 1') tl log2(l + 1') (1 + 1') 

tl log (1 + 1')J DV + EF [(1 + 1')12 1J 
- (1 + 1')/1 + (1 + 1')12 log (1 + 1') (1 + 1')/\ -

R(DV+EF)[ 1 i IOg(l+1') 1] 
+ Q log2 (1 + 1') (1 + 1')13 + (1 + 1')12 - (1 + 1')12 • 

Since this equation is not simple to differentiate with respect to Q, it is suggested 
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that the optimal "Q" be determined by one of the earlier mentioned search tech
niques. 

9. Generalization of ELRS to Processes Including Subassemblies 

9.1 Policy Determination 

Often the production problem in a fabrication shop is not viewed as a con
tinuous process, the output of which is one final product; rather, it is viewed as 
the production of several subassemblies which may then be combined into other 
subassemblies, ad infinitum, until they are finally combined into the final product. 
In a production process such as this, lot release sizes on the varioUD subassemblies 
may, in fact, be different from each other. The problem then becomes one of 
determining optimal lot release sizes for each one of the subassemblies. Each sub
assembly, however, cannot be viewed independently of the other subassemblies 
because of the interdependencies that exist between the various subunits in the 
production process. This succession of subassemblies into a major assembly may 
be illustrated by Figure 7. 

At first thought, determining the proper production policy out of all of those 
available may seem like a very difficult task; however, simple reasoning elimi
nates most of the available policies. From basic relationships, we can draw the 
following conclusions. 5 

1. Never produce earlier subassemblies in smaller lot releases than later ones.6 If 

6 Considerations of workload balancing can change any of these conclusions. These 
conclusions, as all those made in this paper, are made with the assumption that workload 
balancing considerations will be applied after the ELRS is determined. These considera
tions may change the lot release sizes. Problems of safety stocks and spoilage of parts can 
be handled within the framework of this analysis. If the expected spoilage of a part is 10%, 
then the initial release must be 10% higher than the optimum recommended by this analysis. 
A safety stock will be an additional amount that is made once and then carried along with 
the production policy applying to oscillations on top of this safety stock. 

S An earlier subassembly is one that fits as a part into a later subassembly. The subscript 
Hi" will be used to number the subassemblies, <Ii + n" denoting an earlier subassembly 
and <Ii - n" connoting a later subassembly. 
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we did produce earlier subassemblies requiring multiple releases of an earlier part 
for one release of a later one, a better policy would always be to release the 
earlier subassembly in lot sizes equal to that of the later subassembly. This is be
cause being produced less often, the total cost per unit of S / Q + P / Q will be less. 
The total amount of time that the earlier subassembly is carried in stock will also 
be less, because the earlier releases on the subassembly cannot be used until 
later releases on the subassembly bring the total amount of the part available up 
to what is necessary for making one release of the later assembly. A better policy 
would be to produce the entire requirement of the earlier subassembly at the 
time of the later release, just prior to the requirement for its usage. 

2. Always produce earlier subassemblies in integer multiples of the lot release size 
of the final assembly. There is no need to produce earlier subassemblies in non
integer multiples of later subassemblies or the final assembly because the non
integer parts of the subassembly release will be unable to completely satisfy the 
demand for that subassembly in any release of a subsequent assembly. A non
integer multiple release will always require more production setups and runs than 
will the next higher integer multiple (or any larger) release. The only advantage 
of producing with more releases is that inventory carrying costs are lower. How
ever, the noninteger part of the release ends up being carried until the next 
release is made, a relatively long time that did not enter the ELRS solution, and 
this extra carrying time negates the advantage of producing exactly the optimal 
quantity. The non-integer part is therefore just carried longer in inventory and 
provides no advantage whatsoever. An economic analysis of this extra carrying 
time is presented later in this section. 

3. We therefore have narrowed the choice of reasonable policies to those policies 
which determine lot release sizes of earlier assemblies to be equal to integer multiples 
of the lot release sizes of later subassemblies and of the final assembly. On the follow
ing pages, a description of how we can explicitly determine a production policy 
for interrelated subassemblies is presented. 

9.2 Analysis 

From Conclusion 3 above, 

(36) ni = kni-l. 

When part "i" goes into part "i - I", where "k" is an integer, and where the 

c,-
u. 
o 
..... 

FIG. 8. Inventory Fluctuation of Fabricated Part Experiencing Continuous Usage 
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"n' 8" are defined from the optimal lot release quantities, 

(37) 

Ql being the lot release size of the completed assembly ready for installation on 
the line. 

Since the final assembly is used at a uniform rate on the line, the production 
cycle of the final assembly has to make sure that parts are always available and 
would resemble Figure 8. Notice that each new release is completed and ready for 
usage on the line just at the time that the old release runs out (the addition of 
safety stocks would not change the basic cycle, but merely move all ordinate 
values upwards). 

The time between successive lot releases, T1 , is equivalent to the time between 
the dotted lines, 

(38) 

(R should be defined in tenns of final production units, so that all subassemblies 
in an interrelated case will have the same R. If Z identical parts or subassemblies 
are required for one final unit, then the ELRS output should be multiplied by Z.) 

It will become evident that the time period Tl is important because for optimal 
inventory control all levels of lower assemblies or parts that go into assembly 1 
must be released in integer time multiples of T 1 • . 

Now consider subassembly 2, which is required as a part for assembly 1. From 
earlier statements, 

(39) 

where n2 is an integer. 
The fluctuation of inventory value over time for a single lot release of item 2 

would be like Figure 9 if n2 = 4. The abscissa represents time and the ordinate 
is either dollars invested in inventory or units of inventory. Each time that sub
assembly 1 is released, i of the total amount made of subassembly 2 is used up. 
This staggered usage would cause the inventory value cycle of subassembly 2 to 
have the staircase effect of the figure above, each drop corresponding to a pro
duction period of subassembly 1. This basic cycle looks different from the pre
viously postulated trapezoidal shape for inventory. However, it is possible to 
modify the previously derived ELRS formulas to take into account this new 
shape. 

For simplicity in the time variable, we shall work with Model A and adjust 
the earlier ELRS formula by modifying the "average time/unit" expression, 
which helped to determine the carrying charges. Model C would also be used, 
giving a slightly more accurate policy recommendation; however, part of the 
required input would be a list of the specific times that production would com
mence on each subassembly. The author feels that in most industrial situations 
the improved recommendations made possible by the use of Model C would not 
be worth the extra trouble it would take to get this additional input data. There
fore, in the many subassemblies case, we use Model A and ignore time discount
ing. 
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FIG. 9. Inventory Fluctuation of Subassembly 2 

The cost equation for Model A of ELRS was 

. S A (1 - h -Q) (1) 
(9) C = Q + Q log h + B + (DV + EF) t2 - 2" tl + Q/2R . 

The last expression in this cost equation, 

(7) 

was derived from consideration of the trapezoid and was a representation of the 
time that an average unit was held. In general, the av time/unit = l/units pro
duced (units X time/unit). 

For the new cycle, we simply have to consider the new geometric shape. We 
can break the entire cycle up into small geometric patterns whose areas we know. 
By summing these small figures, we get the area of the new cycle. According to 
the way our axes are defined, this area is the integral of (units X time/unit) and 
when divided by the number of units produced yields an expression for average 
time/unit. For this particular new cycle, the average time per unit is7 

. /. 1 [Q2 t1,2 ( )Q (tl'l Q2) + Q2 (T ) ( 40) av tIme unIt = Q2 -2- + 0. - tl 2 + ~ 21h 1h 1 

+ Q2 (2T1) + .. , Q2 (n2 - 1)(Tl)]' 
1h 1h 

The second line of terms in equation (40) may be summed to 

(41) ~ [~(1h ; l)Tl] . 

Therefore, the 

(42) av time/unit = ~ [Q2 tl,2 + (0. _ t1)Q2 + Q2 tl,l + [Q2(n2 - 1)Tl] , 
Q2 2 2 2 

or, for subassembly 2 

(43) av time/unit = [0. - ~ + t~l + Tl (1h ;- 1)J. 
7 Definition Note: tiJ means ti for subassembly j. Where the second subscript is omitted, 

it means that it should be the subscript for the assembly whose Q is presently being derived. 
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As mentioned earlier, 

(44) 

The four terms comprising equation (43) represent the areas of the various geo
metric shapes that make up Figure 9, which shows the cycle of inventory value 
for subassembly 2. 

1. The first term represents the initial triangle for production of subassembly 
2. 

2. The second term is the rectangle for the holding period. 
3. The third term is the sum of the little triangles which occur during the 

use of this part in assembly 1. 
4. The remaining terms which are algebraically combined into one term 

are the long narrow rectangles which make up the rest of the area. 
The ELRS formula, with the new value for the average time that one unit is 

held, gives the cost of producing subassembly 2 according to the optimal policy 
derivation made earlier. 

A little thought shows that the time between successive lot releases of sub
assembly 2 is given by 

(45) 

This is because the time between successive releases is governed by the use 
period and does not depend on the production or hold times. We can consider 
subassemblies that are earlier (larger number) and we now illustrate that, in 
general, 

(46) 

where "n/' is defined as 

(47) Qi 
ni = Ql' 

The basic shape of the inventory cycle for subassembly 3, if subassembly 3 
were required as a part of subassembly 2, would be similar to the trapezoid with 
steps, representing the inventory cycle of subassembly 2. All subassemblies will 
have this same basic shape. For instance, if Qa were six times as large as Qz , then 
the inventory cycle for subassembly 3 would have six steps like Figure 10, re
gardless of what n2 was. Q2, however, is important in determining the actual 
height of the figure since na is defined in terms of Ql . If Qa was equal to 6Q2 , 
while Q2 was 4Ql, then Qa would equal 24Ql (i.e., n8 = 24). 

Notice that the length of the steps in 3's case would be equal to the time be
tween lot releases of 2, T2 , which was proportional to the product of Tl and n2 . 

As another example, if Qa = 2Q2, while Q2 = 3Ql, the basic cycle on sub
assembly 3 will be twice as long as that of 2 (remember basic cycle time is deter
mined only by the use period of the cycle) and six times as long as T l • The 
ratio Qi/Ql is equal to the ratio TilTl in general because the usage rate, R, is 
the same for all subassemblies; if twice as many are produced at anyone time, 
we only need to produce one-half as often. 
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FIG. 10. General Representation of Inventory Fluctuation 

In general, then, the coefficient "n" is the relevant factor for determining the 
basic cycle period of each subassembly 

(46) 

The stepping stone use of 2 does not change general conclusion (48). The impor
tant factor is "n" and the time between the production releases on 2. If na equals 
n2, the time between successive lot releases, T a, is equal to T 2 . If ns equals 2n2 , 
then the inventory value curve will have one step and Ta will equal 2T2 or 6T1 
whenn2 = 3. 

Now return to the analysis of the average time per unit in the inventory cycle. 
For subassembly 2 this was 

(48) av time/un't = I. _ t1,2 + t1,1 + T1(~ - 1) 
1 "'A,2 2 2 2' 

with the last term accounting for the area under the steps. 
The most important step in the logic was that each use period in 3 corre

sponded to a complete production period in 2. 
In general, the value figure for subassembly i has ni/ni-1 steps. Therefore, 

we can generalize the formula for av time/unit by allowing the replacements 
shown in Table 1. 

So, in general, the average time spent in inventory/unit for subassembly "i" is 

(49) T i - 1 -' - 1 
[ 

( n· )] 
~,i _ t~i + t1,;-1 + n;-l 

and ELRS, with this expression for average time, validly determines the lot re
lease size of assembly i in the many subassemblies problem. 

9.3 Solution Algorithm 

The above theory provides an adequate base for the determination of an al
gorithm which will lead to a near optimal production lot size for several interre
lated subassemblies. 

1. Starting at the lowest level (or highest numbered or earliest subassemblies), 
determine the Qls and associated total Cis. Using the regular ELRS Model A 
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TABLE 1 

Generalization of Equation 49 

Tl to be replaced by T'_ l 

to be replaced by 
~ 

n2 n'_l 
t1.1 to be replaced by t1"_1 
t1.2 to be replaced by tl .• 
t2.2 to be replaced by t2 •• 

where nl == 1 

formula, derive the Qls and C/s of all subassemblies working from the earlier 
ones toward the later ones and using the costs of all prerequisite subassemblies 
as material costs for later subassemblies. Finish the entire list of Q's and C's 
ending up with a value for Ql and Cl . 

2. Now, given Ql and Cl , work backwards, developing new Q/s and CIs from 
the optimum policy restrictions such as Qi+l = kQ., where k is an integer. The 
new ELRS formula is used in this step but the subassembly material costs are 
the same ones derived in the previous step. Numerically, we only need to test 
integer values for "n" starting with 1. As soon as a cost figure, C; , is reached 
that is higher than the C, determined with n - 1, then we can say, without test
ing any further, that Qi corresponding to the previous value is the cheapest. We 
can do this because the cost curve derived from the ELRS formula has a positive 
second derivative everywhere and therefore a unique minimum. Now we have an 
entire set of Q/s and C/s derived from the policies mentioned earlier. 

3. Using the lowest level C/s just obtained from Step 2, now derive the next 
higher level Cis for the constrained Q/s from Step 2. This computation uses the 
lowest level C;'s as material costs in conjunction with the new Model A formula 
and the most recent values for Ti and n •. Using earlier subassemblies' costs as 
material cost inputs to later subassemblies, compute new Cis for the constrained 
Q/s through the entire pyramid of prerequisite relationships back towards the 
final subassembly. The purpose of Step 3 is to modify the costs associated with 
Step 2 to reflect the constrained production policy. When the new costs of all of 
the subassemblies prior to the final one are determined, compute a new Ql and 
C 1 for the final subassembly. 

4. Now go back and repeat Step 2 and continue iterating between Step 2 and 
Step 3 until two successive Ql'S or Cl's from Step 3 are within a small arbitrary 
percentage of each other, such as 5 %. When this point is reached, complete 
Step 2 one last time. This final set of Q/s and associated Ci's provides the optimal 
policy for production in the many subassemblies problem. If looked at inde
pendently, the production of any particular subassembly might be cheaper at a 
different Q than that determined by this method; however, as it has been shown 
above, the logical interrelationships make this overall policy the best. 

10. Num.erical Test of ELRS 

Two computer programs were written so that numerical tests could be made 
of the various models proposed in this paper. The purpose of the first program 
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was to permit an exhaustive testing of the differences between the recommended 
policies of Model A, Model B and Model C. These three different analyses were 
simultaneously tested on forty separate data cases, half of which were fairly 
reasonable representations of actual production data and the other half of which 
were extreme, unrealistic data cases which were used to test the limiting behavior 
of the ELRS model. The average IBM 7090 total run time per case was less than 
one second. 

The second program implemented the generalization of ELRS to processes 
including subassemblies. The primary purpose of this program was to test the 
reasonableness of recommended policies in the many subassemblies case and to 
test simultaneously the effectiveness and rapidity of convergence of the solution 
algorithm proposed for the many subassemblies case. 

The results obtained from all of the test cases in both programs were very 
reasonable. The cost curves obtained were of the typical broad fiat EOQ type. 
This type of cost curve reflects conditions where small to medium size deviations 
from an optimal policy result in minor cost penalties. 

The only exception from the reasonable behavior of the models was the per
formance shown by Model B under extremely large interest rates. With a dis
count rate of several hundred percent per year, the cost curve from Model B lost 
its U shape and showed continually decreasing costs as Q increased. Although this 
degeneracy occurred under a test of very unrealistic conditions, it is sufficient 
cause to suggest that Model B not be a recommended analysis. Both Model B 
and Model C require the same type of input data and since Model C is a con
ceptually superior analysis, there is really no need for the Model B approach. 
Model A and Model C behaved very reasonably for all of the test cases. 

Table 2 lists some typical values that were determined for actual parts fabri
cated at the Norair Division of Northrop Corporation. 

As the discount rate increased while all other conditions remained comparable, 
the production policy recommended by all of the models decreased. On the other 
hand, in every case where the recommended Q by each of the models was dif
ferent, the sizes recommended by Models Band C were larger than that recom
mended by A. Under reasonable discount rate assumptions, the recommendations 
by all of the models were the same; however, when the discount rate got up to 
approximately 100 % per year and over, differences in recommended Q's were ob-

TABLE 2 

N orair Examples 

Optimum Release Setup and Pro-
Quantity ductlOn $ Costs 

138 1 
78 2 
59 8 
29 10 
68 20 
63 25 
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TABLE 3 

Model C Recommendations 

LowQ Optima] Q High Q 

17 27 4R 
24 36 85 
26 54 105 
30 48 90 

served. The worst discrepancy in a policy recommended by Model A from that 
recommended by Model C was found on a data case where the discount rate was 
1000 % (maximum tested) per annum. In this case, the recommended Q of Model 
A was 38 % less than that of Model C; however, the cost penalty on Model C of 
using this 38 % lower Q, was only 1.5 %.8 The next worst cases involved deviations 
in recommended policies of 25 % and 30 % with cost penalties in both cases of 
less than 1 % as figured by the Model C analysis. 

Because of these small differences, it was concluded that under most reason
able production circumstances the added value of the sophistication introduced 
by the discounting of future costs was relatively minor. On the other hand, the 
only additional data required for the Model C solution are tl and ~ (r is not a 
new data requirement because it is included as a part of D). If this information 
is readily available and the evaluation is done on a computer, then there is no 
reason not to use the more correct approach, Model C. 

The broad flat area on the cost curve around the optimum production lot size 
may be effectively illustrated by a couple of examples. Where both "HIGH Q" 
and "LOW Q" are defined as the Q's on each side of the optimal Q corresponding 
to a cost 5 % greater than the optimal Q, Table 3 represents typical output data. 
It is obvious that the production policy can vary substantially around the opti
mal while incurring only small cost penalties. If the optimal production policy 
cannot be followed, it seems to be better to err by producing too many at each 
lot release rather than too few. 

The advantage of an upward bias over a downward one is reinforced if we are 
using the recommendations of Model A instead of Model C. This is because 
Model A, which is really a simplification of the more correct analysis, Model C, 
tended to be slightly lower in its recommended lot sizes. 

It may be helpful to restate the fact that Model A was used as the basis for 
the generalization of ELRS to the interrelated parts case because all of the data 
for all subassemblies would have to be introduced in a time dependent manner 
for Model C to function properly. As mentioned in Section 9.2, it was felt that 

8 This is not a misprint. All other things remaining equal, an increase in r always caused 
the recommended Q from Model ° to decrease. However, as unplausible as it may sound, 
Model 0, which considered discounted values always recommended a larger Q than Model 
A, which ignored r. Total costs at any Q were smaller under Model ° than Model A but the 
minimum cost always occurred at a larger Q. 
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this type of input data would not be readily available in most industrial situa
tions. Data on sequential time relationships are not required as input for Model 
A; and, since the policy recommendations were identical ",ith those of Model C 
under reasonable circumstances, 1\1odel A was used as the basis for the generaliza
tion. 

The second program and the associated tests showed that the ELRS model for 
several interrelated subassemblies and the proposed solution algorithm were 
reasonable, feasible and very efficient in terms of computer run time. The solution 
method on all of the data cases ran and converged very rapidly, never requiring 
more than two cycles. The policy recommendations always seemed very reason
able. Usually the suggested lot size of the final subassembly prior to line usage 
was very close to what it would have been not considering any of the relation
ships. The solution algorithm seemed to typically round off earlier lot release 
sizes to the integer multiple of the successor subassembly that was nearest to 
what the independent Q would have been for the predecessor subassembly (within 
constraints). For example, one test was run with five levels of hierarchical de
pendency with the same data applying to each subassembly. The only difference 
at each step, therefore, was in the cost of materials; the later subassemblies in
cluded the cost of the earlier subassemblies in their costs of materials. In this case, 
two out of the four predecessor levels had "n's" that were double that of succes
sors, so that the first level subassemblies were released in lot sizes four times as 
great as the final subassembly. Other tests showed similarly reasonable behavior 
and the author was unable to uncover any numeric examples that the generalized 
ELRS process was unable to analyze. 

It may be of interest to note that the twenty real test cases were randomly 
selected from the Norair Division of Northrop Corporation and calculations 
showed that production according to ELRS sizes averaged a total of setup, 
production, and holding costs that was 2! percent lower than the then current 
figures. For a moderately large job-shop that had expenditures of $20 million a 
year, this reduction in total costs would amount to $500,000. 

II. Conclusions and Limitations 

This paper has presented an analysis of the cost of repetitively producing and 
maintaining parts and subassemblies in a fabrication or job shop. The objective 
of this analysis was to determine the cheapest lot sizes for producing and storing 
these parts and subassemblies. The result of this analysis was a mathematical 
economic model that took into account various broad classes of costs, such as 
setup, production, carrying, capital, direct labor, warehouse, storage, paperwork, 
taxes, insurance, interest, material, etc.; and determined the lot release size that 
would make the total of these costs the lowest possible. Some other important 
considerations such as production schedules and correct inventory levels may be 
determined as a direct outgrowth of the analysis presented. 

Some companies use the standard EOQ formula, 

(51) 
_ (2RS)1/2 

Q- A ' 
R == Usage Rate 
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S == Setup Cost 

A == Carrying cost/unit/time, 

to determine production lot release sizes. We have seen, however, that compared 
with standard EOQ, ELRS has the following advantages. 

1. Production and Setup costs are spread over time-EOQ assumes that 
all of these charges occur at one moment. 

2. Production and Setup costs are spread over the machines involved in the 
production process-EOQ does not include this. 

3. ELRS treats production costs on a learning curve basis-EOQ does 
not analyze this. 

4. ELRS takes into account scheduled holding periods after the produc
tion process is completed and before scheduled use--EOQ does not consider 
this. 

5. ELRS has the capability to discount future costs by the interest rate-
EOQ completely ignores this point. 

6. ELRS's maintenance costs are based on value and physical storage 
size--EOQ only considers value. 

7. ELRS establishes an optimum overall production policy for any group 
of interrelated parts and subassemblies. If part A is required to make sub
assembly B, this fact is taken into account in determining an overall opti
mum production policy for the entire group of interrelated parts and sub
assemblies-EOQ does not consider this at all. 
The recommendations made by the model presented in this report should not 

always be followed exactly because some factors, such as physical production 
constraints, have not been included in the analyses. If the optimal production 
release size is 50 and production restraints limit the release size to 10, then the 
lot size has to be 10. Special conditions can also influence the applicability of the 
model. For example, the analysis is only really applicable to the production of a 
part whose design is fairly stable. If a part were so often technologically changed 
that the design was only frozen for a short time period, then it would be a waste 
of time to analyze its production by the ELRS model. The model also assumes 
that the usage rate and the amount held in safety stock are fairly stable. 

ELRS analysis should not be applied to a part the first few times it is released. 
Only when a certain amount of production history and experience has built up 
would a model such as ELRS become applicable. After the production policy 
recommendations of the ELRS model are made available, they should be modi
fied by allowances for: 

1. Workload balancing. 
2. Manpower fluctuations. 
3. Technical restraints, such as machine capacity. 
4. Emergencies such as new requirements with very short lead times. 
The recommendations of ELRS cannot be followed blindly, but must be 

analyzed for reasonableness in light of these other criteria. 
In short, the model presented in this report is offered as a significantly better 
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approach to determining production release sizes than any other available, and 
it is offered as a way of substantially reducing the cost of production and inven
tory in a job shop. 
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